Math 255B Lecture 6 Notes

Daniel Raban

January 17, 2020

1 Consequences of Analytic Fredholm Theory

1.1 Analytic Fredholm theory

Last time, we were proving the analytic Fredholm theory.
Theorem 1.1 (analytic Fredholm theory). Let $\Omega \subseteq \mathbb{C}$ be open and connected, and let $T(z) \in \mathcal{L}\left(B_{1}, B_{2}\right)$ for $z \in \Omega$ be a holomorphic family of Fredholm operators. Assume that there exists a $z_{0} \in \Omega$ such that $T\left(z_{0}\right): B_{1} \rightarrow B_{2}$ is bijective. Then the set

$$
\Sigma=\{z \in \Omega: T(z) \text { is not bijective }\}
$$

is discrete.
Proof. Let $z_{1} \in \Omega$. Then there is a neighborhood $N\left(z_{1}\right)$ of z_{1} such that for every $z \in N\left(z_{1}\right)$, the Grushin operator

$$
\mathcal{P}_{z_{1}}(z)=\left[\begin{array}{cc}
T(z) & R_{-}(z) \\
R_{+}(z) & 0
\end{array}\right]
$$

is bijective with the inverse

$$
\mathcal{E}_{z_{1}}(z)=\left[\begin{array}{cc}
E(z) & E_{+}(z) \\
E_{-}(z) & E_{-+}(z)
\end{array}\right]: B_{2} \oplus \mathbb{C}^{n_{0}} \rightarrow B_{1} \oplus \mathbb{C}^{n_{0}} .
$$

We claim that for $z \in N\left(z_{1}\right), T(z): B_{1} \rightarrow B_{2}$ is bijective $\Longleftrightarrow E_{-+}(z): \mathbb{C}^{n_{0}} \rightarrow \mathbb{C}^{n_{0}}$ is bijective. ${ }^{1}$ Check:

$$
\left[\begin{array}{cc}
T & R_{-} \\
R_{+} & 0
\end{array}\right]\left[\begin{array}{cc}
E & E_{+} \\
E_{-} & E_{-+}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Longrightarrow T E+R_{-} E_{-}=1, T E_{+}+R_{-} E_{-+}=0
$$

[^0]If E_{-+}^{-1} exists, then $R_{-}=-T E_{+} E_{-+}^{-1}$, so

$$
T\left(E-E_{-} E_{-+}^{-1} E_{-}\right)=1
$$

So T^{-1} exists and

$$
T^{-1}(z)=E(z)-E_{+}(z) E_{-+}(z)^{-1} E_{-}(z) .
$$

Using that $\mathcal{E P}=1$, so $E_{-} R_{-}=1$ and $E_{-} T+E_{-+} R_{+}=0$, we get T^{-1} exists $\Longrightarrow E_{-+}$ exists.

We get for $z \in N\left(z_{1}\right)$ that $T(z)$ is invertible if and only if $\operatorname{det} E_{-+}(z) \neq 0$. The function $\operatorname{det} E_{-+}(z)$ is holomorphic on $N\left(z_{1}\right)$. So either $\operatorname{det} E_{-+}(z) \equiv 0$, or $\operatorname{det} E_{-+}(z) \neq 0$ in a punctured neighborhood of z_{1}. Let $\Omega_{1}=\left\{z \in \Omega: T\left(z^{\prime}\right)\right.$ is invertible $\forall z^{\prime} \neq z$ near $\left.z\right\}$ and $\Omega_{2}=\left\{z \in \Omega: T\left(z^{\prime}\right)\right.$ is not invertible $\forall z^{\prime} \neq z$ near $\left.z\right\}$. Then each Ω_{j} is open, $\Omega_{1} \cup \Omega_{2}=\Omega$, and $\Omega_{1} \neq \varnothing\left(\right.$ as $\left.z_{0} \in \Omega_{1}\right)$. Since Ω is connected, $\Omega_{1}=\Omega$ and thus, $\Sigma=\{z \in \Omega$: $T(z)$ is not invertible $\}$ is discrete.

Remark 1.1. The map $\Omega \backslash \Sigma \rightarrow \mathcal{L}\left(B_{2}, B_{1}\right)$ sending $z \mapsto T(z)^{-1}$ is holomorphic. Consider $T(z)^{-1}$ for z in a punctured neighborhood of $w \in \Sigma$: We have

$$
T^{-1}(z)=E(z)-E_{+}(z) E_{-+}(z)^{-1} E_{-}(z),
$$

where E, E_{+}, E_{-}are all holomorphic in a neighborhood of w. We have that

$$
E_{-+}(z)^{-1}=\frac{\text { holomorphic near } w}{\operatorname{det} E_{-+}(z)}
$$

so we have a Laurent expansion

$$
E_{-+}(z)^{-1}=\frac{R_{-N_{0}}}{(z-w)^{N_{0}}}+\cdots+\frac{R_{-1}}{z-w}+\operatorname{Hol}(z)
$$

where $1 \leq N_{0}<\infty$ and the R_{j} are of finite rank. Combining these formulas, we get that $z \mapsto T(z)^{-1}$ has a pole of order N_{0} at $z=w$:

$$
T(z)^{-1}=\frac{A_{-N_{0}}}{(z-w)^{N_{0}}}+\cdots+\frac{A_{-1}}{z-w}+Q(z), \quad Q(z) \text { holomorphic near } w
$$

where for $1 \leq j \leq N_{0}$, the $A_{-j} \in \mathcal{L}\left(B_{2}, B_{1}\right) \mathrm{n}$ be expressed in terms of $R_{-N_{0}}, \ldots, R_{-1}$ and are therefore of finite rank.

1.2 Application: the residue of the resolvent

Here is an example/special case of the analytic Fredholm theory.

Assume that $B_{1} \subseteq B_{2}$ with continuous inclusion, and let $T(z)=T-z$ for $z \in \Omega$, where T is some operator. Assume that $T(z)$ is Fredholm for each z and that $T\left(z_{0}\right)^{-1}$ exists for some $z_{0} \in \Omega$. We get a Laurent expansion for the resolvent $(T-z)^{-1}$ at $w \in \Sigma$:

$$
(z-T)^{-1}=\frac{A_{-N_{0}}}{\left(z-z_{0}\right)^{N_{0}}}+\cdots+\frac{A_{-1}}{z-w}+Q(z), \quad Q(z) \text { holomorphic near } w .
$$

for $0<|z-w| \ll 1$.
Proposition 1.1. The operator $\Pi:=A_{-1}$ is a projection ${ }^{2}$ on B_{2} which commutes with T (on B_{1}).

Proof. Integrate the Laurent expansion along $\gamma_{r}=\partial D(w, r)$ for $0<r \ll 1$. Then

$$
\Pi=\frac{1}{2 \pi i} \int_{\gamma_{r}}(z-T)^{-1} d z
$$

We claim that $\Pi^{2}=\Pi$: Let $0<r_{1}<r_{2} \ll 1$, and write

$$
\Pi^{2}=\int_{\gamma_{r_{2}}} \int_{\gamma_{r_{1}}}(z-T)^{-1}(\widetilde{z}-T)^{-1} \frac{d z}{2 \pi i} \frac{d \widetilde{z}}{2 \pi i}
$$

Using $(\widetilde{z}-T)^{-1}-(z-T)^{-1}=(\widetilde{z}-T)^{-1}(z-\widetilde{z})(z-T)^{-1}$, we have

$$
=\int_{\gamma_{r_{2}}} \int_{\gamma_{r_{1}}} \frac{1}{\widetilde{z}-z}(z-T)^{-1} \frac{d z}{2 \pi i} \frac{d \widetilde{z}}{2 \pi i}-\int_{\gamma_{r_{2}}} \int_{\gamma_{r_{1}}} \frac{1}{\widetilde{z}-z}(\widetilde{z}-T)^{-1} \frac{d z}{2 \pi i} \frac{d \widetilde{z}}{2 \pi i}
$$

The second term is 0 by applying the Cauchy integral formula on the inner integral.

So we get

$$
\Pi^{2}=\int_{\gamma_{r_{1}}} \underbrace{\frac{1}{2 \pi i} \int_{\gamma_{r_{2}}} \frac{1}{\widetilde{z}-z} d \widetilde{z}}_{=1}(z-T)^{-1} \frac{d z}{2 \pi i}=\Pi .
$$

Remark 1.2. We know that $T(\operatorname{Ran} \Pi) \subseteq \operatorname{Ran} \Pi \subseteq B_{1}$, where $\operatorname{Ran} \Pi$ is finite dimensional, and let us check that $\left.\left(T-z_{0}\right)\right|_{\operatorname{Ran} \Pi}$ is nilpotent:

$$
\begin{aligned}
\left(T-z_{0}\right) \Pi & =\frac{1}{2 \pi i} \int_{\gamma_{r}}\left(T-z_{0}\right)(z-T)^{-1} d z \\
& =\underbrace{\frac{1}{2 \pi i} \int_{\gamma_{r}}(T-z)(z-T)^{-1} d z}_{=0}+\frac{1}{2 \pi i} \int_{\gamma_{r}}\left(z-z_{0}\right)(z-T)^{-1} d z
\end{aligned}
$$

[^1]$$
=\frac{1}{2 \pi i} \int_{\gamma_{r}}\left(z-z_{0}\right)(z-T)^{-1} d z
$$

It follows that

$$
\left(T-z_{0}\right)^{j} \Pi=\frac{1}{2 \pi i} \int_{\gamma_{r}}\left(z-z_{0}\right)^{j}(z-T)^{-1} d z
$$

And if $j=N_{0}$, we get $\left(T-z_{0}\right)^{N_{0}} \Pi=0$, as $\left(z-z_{0}\right)^{N_{0}}(z-T)^{-1}$ is holomorphic.

[^0]: ${ }^{1}$ What we lose from this reduction is that if $T(z)$ has some simple dependence of z (e.g. polynomial), $E_{-+}(z)$ may not have a simple dependence. In some contexts, the operator E_{-+}is called the effective Hamiltonian.

[^1]: ${ }^{2}$ This is sometimes called the Riesz projection.

